Indian Journal of Psychological Medicine
  Home | About Us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Contact | Advertise | Submission | Login 
Users Online: 255 
Wide layoutNarrow layoutFull screen layoutHome Print this page Email this page Small font sizeDefault font sizeIncrease font size


 
 Table of Contents    
REVIEW ARTICLE
Year : 2016  |  Volume : 38  |  Issue : 1  |  Page : 6-9  

Methodological issues in cytokine measurement in schizophrenia


Department of Psychiatry and Behavioral Sciences, George Washington University School of Medicine and Health Sciences, Washington, DC, USA

Date of Web Publication28-Jan-2016

Correspondence Address:
Maju Mathew Koola
Clinical Research Program, Sheppard Pratt Health System, 6501 N Charles St., Baltimore, MD 21204
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0253-7176.175086

Rights and Permissions
   Abstract 

There is mounting evidence that inflammation is a major factor in the pathophysiology of schizophrenia. Inflammatory status is commonly ascertained by measuring peripheral cytokine concentrations. An issue concerning research on inflammation and schizophrenia relates to assay methodology. Enzyme-linked immunosorbent assay (ELISA) is the most widely used and the gold standard method used to measure cytokine concentrations. ELISA has a number of limitations. Both ELISA and multiplex are limited by not being able to distinguish between bioactive and inactive molecules and the matrix and heterophilic (auto-) antibody interference. Multiplex assays when combined with gene expression analysis and flow cytometry techniques such as fluorescence-activated cell sorting may be useful to detect abnormalities in specific immune pathways. Peripheral blood mononuclear cells cultures, to evaluate in vitro lipopolysaccharide-induced cytokine production, may be a better technology than measuring cytokines in the serum. The purpose of this paper is to shed light on major methodological issues that need to be addressed in order to advance the study of cytokines in schizophrenia. We make a few recommendations on how to address these issues.

Keywords: Cytokines, flow cytometry, peripheral blood mononuclear cells culture, schizophrenia


How to cite this article:
Koola MM. Methodological issues in cytokine measurement in schizophrenia. Indian J Psychol Med 2016;38:6-9

How to cite this URL:
Koola MM. Methodological issues in cytokine measurement in schizophrenia. Indian J Psychol Med [serial online] 2016 [cited 2019 Dec 6];38:6-9. Available from: http://www.ijpm.info/text.asp?2016/38/1/6/175086


   Introduction Top


Cytokines are produced by many types of cells including immune cells (e.g., macrophages, lymphocytes, and mast cells), endothelial cells, fibroblasts, and stromal cells. Current cytokine assays are designed to measure cross-sectional, peripheral cytokine concentrations, regardless of the source of the cytokine(s). Many cytokines have an opposing and sometimes complimentary effect to each other; thereby, modulating the severity of the immune response. There is a growing body of evidence of inflammation pathophysiology in schizophrenia. [1],[2],[3] The purpose of this review paper was to shed light on limitations and major methodological issues and how to address them in order to advance the study of cytokines in schizophrenia.


   Cytokine Measurement Issues Top


Enzyme-linked immunosorbent assay (ELISA) is the most widely used and the gold standard method used to measure cytokine concentrations. ELISA has a number of limitations : b0 inding affinity of antibodies can vary, the method requires large sample volume, it has a narrow dynamic range, can measure only one protein at a time, and is costly. Multiplex immunoassays can measure multiple cytokines simultaneously, and there are no specific limitations to the multiplex assays other than the two mentioned in the next sentence. Both ELISA and multiplex are limited by not being able to distinguish between bioactive and inactive molecules and the matrix and heterophilic (auto-) antibody interference. These antibodies cause false positive and false negative signals by binding to either the capture antibody, detection antibody or to the antigen. [4],[5]

Most of the studies included in the meta-analyses, [1],[2] used ELISA, but there were a few exceptions. Out of the 40 studies (in supplement), [2] 35 studies used ELISA, one study each used semimicroassay, [6] radioimmunoassay (RIA), [7] bioassay, [8] sandwich, [9] and cytometric bead array. [10] ELISA, RIA, and bioassay were used in 83%, 9%, and 8% of the studies, respectively (supplement). [1] Several studies used peripheral blood mononuclear cells (PBMC) cultures stimulated with lipopolysaccharide (LPS) or phytohemagglutinin. [11],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16] RIA was used by a few studies. [17],[18],[19] Two studies used stimulated T cell culture. [20],[21] In three studies, within the same study, interleukin 2 (IL-2) was measured by RIA and IL-6 and IL-8 were measured by ELISA. [19],[22],[23] One study did bioassay using the IL-6 dependent hybridoma cell line B9. [8] In none of the studies were any data presented to compare the similarity of results across different assays, nor were any data presented to suggest which cytokine measurement tests produce the most reliable and consistent results.


   The Chicken And The Egg Conundrum Top


Another largely unaddressed question regarding the association between cytokines and schizophrenia is whether observed cytokine changes in schizophrenia are part of the causal pathway leading to the disease, or a secondary consequence of treatment, e.g., weight gain or result from lifestyle concomitants in people with schizophrenia, such as smoking. The issue of secondary consequence of treatment has been addressed in the Miller et al. meta-analysis. [2] The first episode participants were drug naïve, suggesting that cytokine abnormalities in schizophrenia are independent of antipsychotic medications. [2] A further possibility is that cytokines may be elevated as a consequence of the hypothalamic-pituitary-adrenal axis arousal induced by distressing psychiatric symptoms.


   How To Design Future Studies Top


Careful attention should be paid to the experimental design, sample collection, preparation, and storage; all these may have an impact on the study results. [5],[8],[24],[25],[26],[27],[28] As previously reported, [29] future studies should validate the cell sources (lymphocytes, monocytes, etc.) of specific cytokines and the complex interactions among cytokines and its association with oxidative stress and other systems. Although peripheral cytokine concentrations are easier to measure and have been mostly used in studies of schizophrenia, more research is needed to examine the association between cerebrospinal fluid and blood concentrations. Although the meta-analysis [2] examined the longitudinal changes in cytokines, antipsychotic treatment was not standardized. Future studies are warranted to validate the findings of longitudinal changes in cytokines; this evidence is scant in the literature.

Multiplex assays when combined with gene expression analysis and flow cytometry techniques such as fluorescence-activated cell sorting (FACS) may be useful to detect abnormalities in specific immune pathways. [30] PBMC cultures, to evaluate in vitro LPS-induced cytokine production, may be a better technology than measuring cytokines in the serum. [31],[32],[33],[34],[35],[36] Cytokines in serum may be vulnerable to differential concentrations between the site of cytokine release and blood concentrations and the relatively short half-life of cytokines. The use of PBMC cultures complements the collection of peripheral cytokine measures. Significant increases in peroxisome proliferator-activated receptor gamma, sterol regulatory element-binding transcription factor 1, IL-6 and tumor necrosis factor alpha, and decreases in peroxisome proliferator-activated receptor alpha and C/enhancer-binding protein alpha and mRNA levels using stimulated PBMC were found in 31 participants with schizophrenia compared to 31 controls. [37] Describing FACS and PBMC culturing in detail is beyond the scope of this paper. Investigators should decide, after consulting with a psychoneuroimmunologist, which tests to be done.


   Conclusions And Future Directions Top


In sum, there is considerable evidence for a role of inflammation in the pathophysiology of schizophrenia. The use of standardized methodology for cytokine measurement will enhance the replicability of results across studies. This will advance the field for potential integration of pathophysiology with novel therapeutic discovery targeting inflammatory mechanisms.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review. Biol Psychiatry 2008;63:801-8.  Back to cited text no. 1
    
2.
Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol Psychiatry 2011;70:663-71.  Back to cited text no. 2
    
3.
Girgis RR, Kumar SS, Brown AS. The cytokine model of schizophrenia: Emerging therapeutic strategies. Biol Psychiatry 2014;75:292-9.  Back to cited text no. 3
    
4.
Skogstrand K, Thysen AH, Jørgensen CS, RasmussenEM, Andersen AB, Lillebaek T, et al. Antigen-induced cytokine and chemokine release test for tuberculosis infection using adsorption of stimulated whole blood on filter paper and multiplex analysis. Scand J Clin Lab Invest 2012;72:204-11.  Back to cited text no. 4
    
5.
Keustermans GC, Hoeks SB, Meerding JM, Prakken BJ, de Jager W. Cytokine assays: An assessment of the preparation and treatment of blood and tissue samples. Methods 2013;61:10-7.  Back to cited text no. 5
    
6.
Becker D, Kritschmann E, Floru S, Shlomo-David Y, Gotlieb-Stematsky T. Serum interferon in first psychotic attack. Br J Psychiatry 1990;157:136-8.  Back to cited text no. 6
    
7.
Barak V, Barak Y, Levine J, Nisman B, Roisman I. Changes in interleukin-1 beta and soluble interleukin-2 receptor levels in CSF and serum of schizophrenic patients. J Basic Clin Physiol Pharmacol 1995;6:61-9.  Back to cited text no. 7
    
8.
Frommberger UH, Bauer J, Haselbauer P, Fräulin A, Riemann D, Berger M. Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: Comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 1997;247:228-33.  Back to cited text no. 8
    
9.
Akiyama K. Serum levels of soluble IL-2 receptor alpha, IL-6 and IL-1 receptor antagonist in schizophrenia before and during neuroleptic administration. Schizophr Res 1999;37:97-106.  Back to cited text no. 9
    
10.
Drexhage RC, Padmos RC, de Wit H, Versnel MA, Hooijkaas H, van der Lely AJ, et al. Patients with schizophrenia show raised serum levels of the pro-inflammatory chemokine CCL2: Association with the metabolic syndrome in patients? Schizophr Res 2008;102:352-5.  Back to cited text no. 10
[PUBMED]    
11.
Schattner A, Cori Y, Hahn T, Sirota P. No evidence for autoimmunity in schizophrenia. J Autoimmun 1996;9: 661-6.  Back to cited text no. 11
    
12.
Cazzullo CL, Scarone S, Grassi B, Vismara C, Trabattoni D, Clerici M, et al. Cytokines production in chronic schizophrenia patients with or without paranoid behaviour. Prog Neuropsychopharmacol Biol Psychiatry 1998;22:947-57.  Back to cited text no. 12
    
13.
Ganguli R, Rabin BS, Belle SH. Decreased interleukin-2 production in schizophrenic patients. Biol Psychiatry 1989;26:427-30.  Back to cited text no. 13
    
14.
Bessler H, Levental Z, Karp L, Modai I, Djaldetti M, Weizman A. Cytokine production in drug-free and neuroleptic-treated schizophrenic patients. Biol Psychiatry 1995;38:297-302.  Back to cited text no. 14
    
15.
Kaminska T, Wysocka A, Marmurowska-Michalowska H, Dubas-Slemp H, Kandefer-Szerszen M. Investigation of serum cytokine levels and cytokine production in whole blood cultures of paranoid schizophrenic patients. Arch Immunol Ther Exp (Warsz) 2001;49:439-45.  Back to cited text no. 15
    
16.
Kowalski J, Blada P, Kucia K, Madej A, Herman ZS. Neuroleptics normalize increased release of interleukin- 1 beta and tumor necrosis factor-alpha from monocytes in schizophrenia. Schizophr Res 2001;50:169-75.  Back to cited text no. 16
    
17.
Xu HM, Wei J, Hemmings GP. Changes of plasma concentrations of interleukin-1 alpha and interleukin-6 with neuroleptic treatment for schizophrenia. Br J Psychiatry 1994;164:251-3.  Back to cited text no. 17
    
18.
Naudin J, Mège JL, Azorin JM, Dassa D. Elevated circulating levels of IL-6 in schizophrenia. Schizophr Res 1996;20:269-73.  Back to cited text no. 18
    
19.
Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen YC. Elevated interleukin-2, interleukin-6 and interleukin-8 serum levels in neuroleptic-free schizophrenia: Association with psychopathology. Schizophr Res 2002;57:247-58.  Back to cited text no. 19
    
20.
Villemain F, Chatenoud L, Guillibert E, Pelicier Y, Bach JF. Decreased production of interleukin-2 in schizophrenia. Ann N Y Acad Sci 1987;496:669-75.  Back to cited text no. 20
[PUBMED]    
21.
Villemain F, Chatenoud L, Galinowski A, Homo-Delarche F, Ginestet D, Loo H, et al. Aberrant T cell-mediated immunity in untreated schizophrenic patients: Deficient interleukin-2 production. Am J Psychiatry 1989;146:609-16.  Back to cited text no. 21
    
22.
Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC. Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: Relationship to outcome in schizophrenia. J Clin Psychiatry 2004;65:940-7.  Back to cited text no. 22
    
23.
Zhang XY, Zhou DF, Cao LY, Wu GY, Shen YC. Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: Association with psychopathology and response to antipsychotics. Neuropsychopharmacology 2005;30:1532-8.  Back to cited text no. 23
    
24.
Bienvenu JA, Monneret G, Gutowski MC, Fabien N. Cytokine assays in human sera and tissues. Toxicology 1998;129:55-61.  Back to cited text no. 24
    
25.
Fahey JL. Cytokines, plasma immune activation markers, and clinically relevant surrogate markers in human immunodeficiency virus infection. Clin Diagn Lab Immunol 1998;5:597-603.  Back to cited text no. 25
    
26.
Wadhwa M, Thorpe R. Cytokine immunoassays: Recommendations for standardisation, calibration and validation. J Immunol Methods 1998;219:1-5.  Back to cited text no. 26
    
27.
Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 2008;63:879-84.  Back to cited text no. 27
    
28.
Zhou X, Fragala MS, McElhaney JE, Kuchel GA. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr Opin Clin Nutr Metab Care 2010;13:541-7.  Back to cited text no. 28
    
29.
Miller BJ, Gassama B, Sebastian D, Buckley P, Mellor A. Meta-analysis of lymphocytes in schizophrenia: Clinical status and antipsychotic effects. Biol Psychiatry 2013;73:993-9.  Back to cited text no. 29
    
30.
Drexhage RC, Hoogenboezem TA, Cohen D, Versnel MA, Nolen WA, van Beveren NJ, et al. An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces. Int J Neuropsychopharmacol 2011;14:746-55.  Back to cited text no. 30
    
31.
Hornberg M, Arolt V, Wilke I, Kruse A, Kirchner H. Production of interferons and lymphokines in leukocyte cultures of patients with schizophrenia. Schizophr Res 1995;15:237-42.  Back to cited text no. 31
    
32.
Wilke I, Arolt V, Rothermundt M, Weitzsch C, Hornberg M, Kirchner H. Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 1996;246:279-84.  Back to cited text no. 32
    
33.
Chovanova L, Vlcek M, Krskova K, Penesova A, Radikova Z, Rovensky J, et al. Increased production of IL-6 and IL-17 in lipopolysaccharide-stimulated peripheral mononuclears from patients with rheumatoid arthritis. Gen Physiol Biophys 2013;32:395-404.  Back to cited text no. 33
    
34.
Schildberger A, Rossmanith E, Eichhorn T, Strassl K, Weber V. Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Mediators Inflamm 2013;2013:697972.  Back to cited text no. 34
    
35.
Zhao GJ, Chen X, Li XL, Yu YJ, Hong GL, Qiu QM, et al. Functional polymorphism of NRF2 gene promoter -617C/A in lipopolysaccharide-stimulated peripheral blood mononuclear cellular inflammatory response in patients with alcoholic liver disease. Zhonghua Nei Ke Za Zhi 2013;52:581-4.  Back to cited text no. 35
    
36.
Balia C, Petrini S, Scalise V, Neri T, Carnicelli V, Cianchetti S, et al. Compound 21, a selective angiotensin II type 2 receptor agonist, downregulates lipopolysaccharide-stimulated tissue factor expression in human peripheral blood mononuclear cells. Blood Coagul Fibrinolysis 2014;25:501-6.  Back to cited text no. 36
    
37.
Chase KA, Rosen C, Gin H, Bjorkquist O, Feiner B, Marvin R, et al. Metabolic and inflammatory genes in schizophrenia. Psychiatry Res 2015;225:208-11.  Back to cited text no. 37
    




 

Top
 
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Cytokine Measure...
    The Chicken And ...
    How To Design Fu...
    Conclusions And ...
    References

 Article Access Statistics
    Viewed1457    
    Printed15    
    Emailed0    
    PDF Downloaded62    
    Comments [Add]    

Recommend this journal