Indian Journal of Psychological Medicine
  Home | About Us | Editorial Board | Search | Ahead of print | Current Issue | Archives | Instructions | Contact | Advertise | Submission | Login 
Users Online: 1083 
Wide layoutNarrow layoutFull screen layoutHome Print this page Email this page Small font sizeDefault font sizeIncrease font size


 
 Table of Contents    
CASE REPORT
Year : 2016  |  Volume : 38  |  Issue : 4  |  Page : 348-352  

Malingering and factitious disorder (Münchausen-syndrome) can be mitochondrial


Krankenanstalt Rudolfstiftung, Vienna, Austria

Date of Web Publication11-Jul-2016

Correspondence Address:
Josef Finsterer
Postfach 20, 1180 Vienna
Austria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0253-7176.185947

Rights and Permissions
   Abstract 

Malingering and factitious disorder (Münchausen-syndrome) has not been reported as a manifestation of a mitochondrial-disorder (MID). Here, we report a 46 years-old female with a MID due to a combined complex I-IV defect, manifesting in the cerebrum, muscle, bone marrow, kidneys, and the endocrine glands. Myopathy showed up as myalgia, easy fatigability, ptosis, and abnormal muscle biopsy. Endocrine involvement manifested as short stature and thyroid dysfunction. Involvement of the kidneys manifested as mild Fanconi syndrome. Bone marrow affection resulted in iron-deficient, chronic anemia with elevated transferrin. Cerebral manifestations included epilepsy with rare epileptic and frequent psychogenic seizures, and malingering and factitious disorder (Münchausen-syndrome). Cerebral magnetic resonance imaging was normal. Since malingering-disorder dominated the phenotype, the patient was in the majority of the cases not taken seriously, resulting in 175 hospital admissions over 20 years, repeated expensive diagnostic work-ups and huge amount of avoidable interventions. MIDs also manifest as malingering personality disorder (Münchausen-syndrome) but normal cerebral imaging. Management of such patients could be difficult for institutions not familiar with MIDs and facilitated and improved if these patients are taken seriously and treated at departments particularly dedicated to handle MIDs.

Keywords: Epilepsy, lactate, metabolic myopathy, mitochondrial disorder, multi-organ disorder syndrome, psychiatric


How to cite this article:
Finsterer J, Stefan L. Malingering and factitious disorder (Münchausen-syndrome) can be mitochondrial. Indian J Psychol Med 2016;38:348-52

How to cite this URL:
Finsterer J, Stefan L. Malingering and factitious disorder (Münchausen-syndrome) can be mitochondrial. Indian J Psychol Med [serial online] 2016 [cited 2019 Oct 18];38:348-52. Available from: http://www.ijpm.info/text.asp?2016/38/4/348/185947


   Introduction Top


Mitochondrial disorders (MIDs) are usually multisystem diseases (mitochondrial multi-organ disorder syndromes [MIMODS]) already at onset or become MIMODS during the disease course.[1] One of the organs frequently involved in MIDs is the cerebrum.[2] Cerebral involvement may manifest with or without structural abnormalities on cerebral imaging.[2] Central nervous system involvement, in the absence of structural cerebral abnormalities, include psychiatric abnormalities (autism, psychosis, confusional state, depression, anxiety, mild cognitive impairment, and dementia) or neurological abnormalities (migraine, migraine-like headache, cluster headache, epilepsy, spasticity, ataxia, Parkinson syndrome, tremor, dysarthria, and dystonia).[2] Malingering and factitious disorder (Münchausen-syndrome) has not been reported as manifestation of a MID.[3]


   Case Report Top


The patient is a 46 years-old, HIV-negative, Caucasian female from nonconsanguineous parents, height 140 cm, weight 52 kg, with a history of migraine since childhood, myalgias and muscle cramps since 1990 with consecutive abuse of analgesics, frequent psychogenic, and rare epileptic seizures since 1990, iron-deficient normocytic and normochrome anemia since at least 1994 which did not respond to substitution, hyperlipidemia since at least 1994, malingering and factitious disorder (Münchausen-syndrome) first diagnosed in 1996, hypothyroidism, respectively, low-fT4 syndrome since at least 1996, ptosis since 5/2007, tremor since 4/2011, recurrent benzodiazepine intoxications, and temporary renal insufficiency. In 2009, a port-a-cath system (port) had been implanted and replaced in 5/2011 to facilitate blood drawing and application of intravenous formulations. She inconstantly reported double vision (since 3/1999), hyperhidrosis, xerostomia, easy fatigability, hemihypesthesia, sensory transverse syndrome, headache, and polydipsia. She was smoking and reported multiple allergies. She also pretended to have undergone cataract surgery but the electronic records did not list such a procedure. The family history was positive for diabetes, dementia, hypothyroidism, coronary heart disease with myocardial infarction, arterial hypertension, chronic obstructive lung disease, gonarthrosis, a history of a Wertheim procedure, and hyperlipidemia in her mother, diabetes (one brother and sister of the mother), and sudden cardiac death in her brother. She had one healthy daughter who was living with her father. For seizures she had received carbamazepine, valproic acid, phenytoin, oxcarbazepine, topiramate, and gabapentine in variable dosages, over variable periods, and with questionable compliance. In 2008 she was on a medication with oxcarbazepine 600 mg/day, pantoprazole 40 mg/day, acetyl-salicylic acid 100 mg/day, desloratadine 10 mg/day, iron-sulfate, and morphinsulfate 60 mg/day. In 1/2011 she was on a medication with tramadol 200 mg/day, gabapentin 600 mg/day, pramipexol 0.54 mg/day, trazodone 150 mg/day, and topiramate 100 mg/day. Two months later she reported a medication with gabapentin 300 mg/day, and topiramate 50 mg/day. Temporarily she received erythropoietin for anemia without effect. Antipsychotic medication was repeatedly proposed, but she refused it. She reported that sumatriptan was ineffective during migraine attacks because of vomiting and that she did not tolerate flunarizine. She irregularly took L-thyroxin but was usually euthyreote or showed low-fT4 syndrome.

At age 38 years, she presented with left-sided hemihypesthesia and sore neck muscles exclusively. Neurologic examination at age 41 years revealed right-sided ptosis, double vision and a sensory transverse syndrome Th12 (right) and Th10 (left). At age 42 years neurologic examination revealed bilateral ptosis with right-sided predominance, reduced tendon-reflexes on the upper limbs, and postural tremor. She pretended to have right-sided hemihypesthesia, which started exactly midline. Blood chemical investigations over 20 years (since 1994) revealed episodic hyper-CKemia (maximal value: 1276 U/L), permanent hyperlipidemia, iron deficiency, and transferrin elevation [Figure 1], recurrent hyponatriemia, recurrent hypokalemia, occasional hypocalcemia and hypophosphatemia [Figure 2], occasional hypoglycemia, temporary mild renal insufficiency, and frequent hypochrome, and microcytic anemia [Figure 3]. Resting lactate was occasionally slightly elevated. Lactate stress test on a cycle ergometer was normal (lactate: 0.8, 1.6, 1.7, 1.6, and 0.8 mmol/L). Repeated screening for toxins in the serum and urine revealed elevated benzodiazepines on various occasions. Urinary calcium excretion during 24 h was reduced to 1.9 mmol/day (n: 2.5-7.5 mmol/day). Cerebrospinal fluid investigation in 2/1999 revealed slightly elevated protein, normal lactate, and normal cell count. 24 h blood pressure-monitoring in 1/2011 was noninformative. Multiple electroencephalographys (EEGs) had been recorded but only in three was paroxysmal activity ever documented. Several cerebral magnetic resonance imagings (MRIs) or cerebral computer tomographies were normal each time. MRI of the pituitary gland was normal. Carotid ultrasound was normal. Electrocardiogram (ECG) was usually normal but occasionally incomplete right or left bundle-branch-block-had been recorded. Holter-ECG in 2/2008 was normal. Transthoracic and transesophageal echocardiography in 12/2011 were normal. Gastrosocopy in 7/1998 detected ulcus ventriculi and in 3/2011 eosinophilic esophagitis. Colonoscopy and videocinematography in 3/2011 and abdominal ultrasound in 8/2012 were noninformative. Muscle biopsy in 12/1999 revealed numerous muscle fibres hypo-reactive for oxidative enzymes, sporadic COX-negative fibers, subsarcolemmal accumulation of mitochondria, increase of glycogen, and abnormal mitochondria with cristae proliferation. Biochemical investigations revealed a combined complex I-IV defect. A second muscle biopsy in 3/2008 showed increased membrane-bound and intracellular glycogen and slightly increased amount of lipid-droplets. Mitochondrial volume was increased in some sections. MID was diagnosed. Search for the mtDNA tRNA (Leu) mutations m.3243A>G, m.3271T>C, and m.3252A>G was negative. Within 20 years she had 175 admissions with a mean duration of 3, 5 days [Table 1]. In 51% the cause of admission was psychogenic seizures [Table 1]. In 37% of the admissions, the patient produced further psychogenic seizures during hospitalisation. In 52%, she was dismissed upon her own request [Table 1].
Figure 1: Results of electrolyte determinations (sodium, potassium, calcium, phosphate) in the presented patient over the last 20 years

Click here to view
Figure 2: Values of creatine-kinase, cholesterol, serum iron, and transferrin in the presented patient over the last 20 years

Click here to view
Figure 3: Erythrocyte count, haemoglobin, haematocrit, and thrombocyte counts in the presented patient over the last 20 years

Click here to view
Table 1: Number of admissions, causes of admission, and types of dismissal over a period of 20 years (1994-2014)

Click here to view



   Discussion Top


Strong arguments for a MID in the presented patient are short stature, ptosis, reduced tendon-reflexes, tremor, anemia, muscle biopsy, and the family history.[4] Ptosis is a key phenotypic feature of MIDs and has been reported in CPEO, MERRF, MELAS, Leigh-syndrome, and nonsyndromic MIDs. Anemia is also a typical feature of MIDs and has been described in Pearson-syndrome, Kearns-Sayre-syndrome, Barth-syndrome, MLASA, XLASA, Leigh-syndrome, LHON, MELAS, TRMA, ARSA, but also in nonsyndromic MIDs.[5] Short stature is also a frequent phenotypic feature of MIDs and has been reported in syndromic (MELAS, MERRF, MIDD, Leigh-syndrome) and nonsyndromic MIDs.[6],[7] Epilepsy is also a dominant MID manifestation.[8] Weaker arguments include thyroid dysfunction since hormone levels varied frequently and compliance for intake of L-thyroxine was questionable, and migraine, polydipsia, and arterial hypertension [9] since her information about headache, intake of drugs, and blood pressure monitoring was assessed as untrustworthy and since arterial hypertension is not generally accepted as a MID manifestation.

Though malingering-disorder has been reported only once as a manifestation of a MID,[3] it is well-documented that psychiatric disease is frequently part of the phenotypic spectrum of MIDs. Psychiatric abnormalities have been repeatedly reported in association with MIDs and include mood disorder (depression), anorexia nervosa, bipolar disorder, obsessive-compulsive disorder, cognitive deterioration, psychosis, anxiety, autism, or confusional state.[3],[10] Arguments for malingering-disorder in the presented patient are that she changed her medication frequently, that information about her symptoms and medication was not reliable, that she pretended symptoms, which could not be objectified neither on clinical examination nor on instrumental investigations, that she frequently “produced” psychogenic seizures, resulting in frequent admissions, including intensive care units, and that she accepted painful invasive procedures to get medical attention. An argument for psychogenic seizures was that lactate and prolactine were always normal during or after these events. An argument in favor of epileptic seizures is episodic hyper-CKemia and occasionally paroxysmal EEG activity.

Whether she was injecting insulin via the port to deliberately produce hypoglycemia, or whether she was carrying out blood drawings via the port remains speculative. An argument against voluntary blood drawing is that she had anemia long before the port had been implanted and that anemia was a constant phenomenon over years, making it unlikely that she produced it each time before admission. Arguments against injecting insulin through the port are that she had these attacks already before 2009, that there was never severe hypoglycemia on any of the emergency admissions, that insulin and C-peptide were normal, and that she never presented with typical clinical manifestations of hypoglycemia (temporary tremor, sweating, palpitations, tachycardia, hunger, facial paleness) at any admission. On one of her numerous admissions, she had hypoglycemia and glibenclamid was in her pocket. A further argument for anemia as part of the phenotype is that she had typical MID manifestations, which she could not imitate. Electrolyte disturbances resulted most likely from mild Fanconi syndrome (polyuria, polydipsia, proteinurea, hypophosphatemia, hypoglycemia, and hypouricemia). Myopathy manifested only as ptosis and easy fatigability, cerebral involvement as epilepsy and malingering-disorder, and endocrine involvement as short stature and thyroid dysfunction.

The health system could save costs if patients with psychiatric disease from MIDs are registered and primarily referred to a department equipped to handle MIDs, which is admittedly hardly available. In the light of the increasing prevalence of MIDs, however, institution of departments dedicated particularly to the management of MIDs would be appreciated, since such units would use their expertise not only for an improved satisfaction of the patient but also for saving public money not only by more specific treatment of these patients but also by relief of the many specialized departments, including neurological departments, to which these patients are referred nowadays but which are frequently overburdened with the diagnosis MID and its plethora of phenotypic expressions.

This case shows that MIDs also manifest with a malingering-disorder but normal cerebral imaging. Management of such patients could be difficult for departments not familiar with MIDs and facilitated and improved if these patients are taken seriously and if they are treated at departments particularly dedicated to the handling of MIDs.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Haas RH, Zolkipli Z. Mitochondrial disorders affecting the nervous system. Semin Neurol 2014;34:321-40.  Back to cited text no. 1
[PUBMED]    
2.
Finsterer J. Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand 2006;114:217-38.  Back to cited text no. 2
[PUBMED]    
3.
Anglin RE, Garside SL, Tarnopolsky MA, Mazurek MF, Rosebush PI. The psychiatric manifestations of mitochondrial disorders: A case and review of the literature. J Clin Psychiatry 2012;73:506-12.  Back to cited text no. 3
[PUBMED]    
4.
Finsterer J, Zarrouk-Mahjoub S. Mitochondrial multi-organ disorder syndrome (MIMODS) score generated from definite mitochondrial disorders. Arq Neuropsiquiatr [submitted].  Back to cited text no. 4
    
5.
Finsterer J, Frank M. Haematological abnormalities in mitochondrial disorders. Singapore Med J 2015;56:412-9.  Back to cited text no. 5
[PUBMED]    
6.
Yatsuga S, Povalko N, Nishioka J, Katayama K, Kakimoto N, Matsuishi T, et al. MELAS: A nationwide prospective cohort study of 96 patients in Japan. Biochim Biophys Acta 2012;1820:619-24.  Back to cited text no. 6
[PUBMED]    
7.
Finsterer J Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 2008;39:223-35.  Back to cited text no. 7
    
8.
Desguerre I, Hully M, Rio M, Nabbout R. Mitochondrial disorders and epilepsy. Rev Neurol (Paris) 2014;170:375-80.  Back to cited text no. 8
[PUBMED]    
9.
Liu Y, Zhu Q, Zhu C, Wang X, Yang J, Yin T, et al. Systematic analysis of the clinical and biochemical characteristics of maternally inherited hypertension in Chinese Han families associated with mitochondrial. BMC Med Genomics 2014;7:73.  Back to cited text no. 9
[PUBMED]    
10.
Anglin RE, Tarnopolsky MA, Mazurek MF, Rosebush PI. The psychiatric presentation of mitochondrial disorders in adults. J Neuropsychiatry Clin Neurosci 2012;24:394-409.  Back to cited text no. 10
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1]



 

Top
 
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Case Report
   Discussion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1503    
    Printed11    
    Emailed0    
    PDF Downloaded46    
    Comments [Add]    

Recommend this journal